- N93-1238%
Selecting Reusable Components Using Algebraic Specifications *

David Eichmann

Dept. of Statistics and Computer Science

- - West Virginia University
o Morgantown, WV 26506

= email: eichmann@a.cs.wvu.wvnet.edu
- 1. Introduction

A significant hurdle confronts the software reuser attempting to select candidate components from a

; software repository — discriminating between those components without resorting to inspection of the im-

- plementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lat-
i tice-based faceted classification technique [6] and Guttag and Homing's algebraic specification techniques
E (8]. This approach selects candidates by natural language—~derived classification, by their interfaces, using

signatures, and by their behavior, using axioms.

= We briefly outline our problem domain and related work in sections 2 and 3. Section 4 describes lat-

tice-based faceted classification; we refer the reader to surveys of the extensive literature for algebraic
. specification techniques [1,3,15). Behavioral support for reuse queries appears in section 5, followed by
T our conclusions.

2. The Problem

A mature software repository can contain thousands of components, each with its own specification,
interface, and typically, its own vocabulary. Classification schemes based upon terminology used in com-
ponents and/or their cm@on&ng documentation can &ﬁ&mly fall prey to the ambiguity inherent in
natural language. Less obvious is the ambiguity inherent in formal specifications. Consider the signatures
presented in figures 1 and 2 for a stack of integers and a queue of integers, respectively. These signatures
are isomorphic up to renaming, and thus exemplify the vocabulary problem. Software reusers implicitly

Create: - Stack

¢

di

|
k

i’

= Push: Stack X Integer -3 Stack
Pop: Stack — Stack
Top: Stack — Integer

Empty: Stack — Boolean

0 |

Figure 1 - Signature for the Stack Specification
_— Create: — Queue
& Enqueue: Queue X Integer — Queue
Dequeue: Queue — Queue
— Front: Queue — Integer
— Empty: Queue — Boolean

Figure 2 - Signature for the Queue Specification

!

* To appear in AMAST 91 — Proc. of the Second Int. Conf. Algebraic Methodology and Software Technology.
Workshops in Computing Series, Springer-Verlag, London, UK, due out 1992.

”
I

'J

4]
ol

I

{

Create: — TOI

Insert: TOI X Integer — TOI
Remove: TOI — TOI

Current: TOI — Integer

Empty: TOI — Boolean

"

Figure 3 - Slgnamre for the Amblguous Specxﬁcanon

associate distinct semantics with paruaﬂar names, for examplc. pop and enqueue. Thus, by the choice of
names, a component developer can mislead reusers as to the semantics of components or provide no means
of discriminating between components. Renaming push enqueue, pop dequeue, and top front in a stack
component is an example of the former. Renaming stack and queue to TOI, push and enqueue to insert, pop
and dequeue to remove, and top and front to current in a stack component and a queue component, respec-
tively, is an example of the latter. The signature for the resulting ambiguous specification appears in figure
3.

vy

L I

3. Related Work e e

Recent proposals for repository interfaces (6,5,9,11] failed to adequately address the vocabulary prob-
lem, since they concentrated on vocabulary-oriented classification techniques, ¢.g., from library science.
Prieto-Diaz and Freeman used the notion of literary warrant to develop the faceted classxﬁcanon approach
[11). They clustered descriptive terms drawn from sample components in the rcposntory into a number of
facets comprising a single tuple schema. The faceted classification approach suffers from the vocabulary
problem due to the probable ambiguity in the vocabulary used both in the components and the correspond-
ing documentation. For example, consider the case where various components use terms such as destroy,
delete, remove, discard, etc. — all pairwise synonyms, but with quite distinct semantics.

10

Eichmann and Atkins further structured the facets and facet ples into a lattice, alleviating the require-
ment that all l components contain a value for all facets [6]. The classification of a component contained a
set of values drawn from a given facct, avoiding the need to compute closeness metrics.

Neither of the above approaches completely overcomes the true nature of the vocabulary problem, the
issue of behavior. Algebraic specification techniques (e.g., [8]) partially (and unintentionally) overcome the
vocabulary problem through inclusion of behavioral axioms into the specification. Figures 4 and 5 provide
characterizations for figures 1 and 2, respecuvcly (1gnormg error semantics for the sake of simplicity), The
main objection to algebraic specifications is in the need to comprehend the specxf' cations retrieved from the

Il |

Al

Pop(Push(S,I)) = §
Top(Push(S,I)) = I
Empty(S) = if (S == Create) then true else false

Figure 4 — Axioms for the Stack Specification

Dequeue (Enqueue(Q,I)) = if (Q == Create) then Create
else Enqueue (Dequeue (Q), I)
Front (Enqueue(Q,I)) = if (Q == Create) then I
else Front (Q)
Empty(Q) = if (Q == Create) then true else false

(g g e

Figure 5 — Axioms for the Queue Specification

|

3]

!
v
L

)

¢

"1 i
y

{

SR A

f

(i !

a

repository. The traditional examples in the literature rarely exceed the complexity exhibited in figures 1
and 2.

4. Faceted Classification

4.1, Singl lassifi

The faceted classification methodology, as studied by Prieto-Diaz, begins by using domain analysis “to
derive faceted classification schemes of domain specific objects™ [11,12]. This process relies on a library
notion known as literary warrant, involving the collection of a representative sample of titles which are to
be classified and extracting descriptive terms to serve as a grouping mechanism for the titles. From this
process, the classifier not only derives terms for grouping but also identifies a vocabulary that serves as
values within the groups.

From the software perspective, the groupings or facets become a taxonomy for the reusable compo-
nents. Using literary warrant, Prieto-Diaz identified six facets that can be used as a taxonomy: Function,
Object, Medium, System Type, Functional Area and Setting. Every software component is classified by
assigning a value for each facet for that component. For example, a software component in a relational data-
base management system that parses expressions might be classified with the tple

(parse, expression, stack, interpreter, DBMS,).
Thus, the Function facet value for this component is “parse”™, the Object facet value is “expression”, etc.
Note that no value has been assigned for the Setting facet as this software component does not seem to have
an appropriate value for the Setting facet.

The software reuser locates software components in a faceted reuse system by specifying facet values
that are descriptive of the software desired. For example, using Prieto-Diaz's facets, suppose that we wish
to find a software component to format text. We might query the system by constructing the tuple

(format, text, file, file handler, word processor, *).
Note that the asterisk for the value for the Setting facet acts as a wild card in the query which indicates that
there is no constraint on that facet. If the query results in one or more “hits”, then the reuser chooses from
the hits the particular software component that best fits the desired need. Problems arise if no hits are ob-
tained or if the software that is identified is not appropriate to the needs of the reuser. One solution is to
weaken the query by relaxing one or more constraints by replacing a facet value with a wild card. For exam-
ple, if the Functional Area facet has the least significance to the required need, the reuser could again pose
the query with the tuple

(format, text, file, file handler, *, °).
This process of weakening the query continues until a suitable component is retrieved.

An alternative method for continuing the search after an initial query involves conceptual closeness,
where pairs of facet values for the same facet have numeric values associated with them that in a sense
measures their “degree of sameness.” For example, the two facet values “delete” and “remove” would be
very close in meaning and hence would have a metric value close to 0 indicating their semantic closeness.
However, the two values “add” and “format” fdr Function have little in common and hence would have a
closeness value nearer to 1. In this method, the system assumes the responsibility for continued searches by
modifying the query by replacing facet values with values that are “close” in meaning as determined by the

closeness metric. For example, if the facet value “editor” is closer to “word processor” in terms of the met-
ric than any other value in any facet, then the system poses the query with the modified tuple

(format, text, file, file handler, editor, *)
and continues in this manner until a hit is obtained.

Although this appears to be a reasonable solution to the problem of continued searches, the difficulty
lies in the need to assign meaningful closeness values to pairs of facet values. With a large collection of
values, this is a daunting task.

4 i lassificatic

Latticebased faceted classification extends simple faceted classification by organizing an arbitrary
number of facets and n—tuples into a lattice [5]. As shown in figure 6, there are four sublattices comprising
the complete type lattice, corresponding to the types generated by facet sets, functions, ADTs, and tuples.

In addition, the universal type, T, and the void type, L, ensure that a least upper bound and a greatest lower
bound, respectively, exist for any two types in the lattice. - - -

Facelp characterizes the notion of the empty facet type; it contains no values, but is still a facet. Like-
wise, Facet characterizes the notion of the set of all possible facet values. The dotted line between them
indicates that a number of types appear here in the lattice. In particular, there is a vertex for each member
of the power set formed from the elements comprising the facet. Figure 7 shows the lattice for the exam-
ples in section 4.1 expanded to show the sublattices for each of the facets.

Function types are bounded above by L — T, the function type with a void domain and universal
range, and are bounded below byT-—)J.,mcfuncnontypewxdmumversal domamandvondrange

ADT typw are bounded above by 3e.g, the abstract type denoting a hidden type, e, with no information

or operations available, and are bounded below by ADT, the type denoting all possible types with all possi-
ble operations.

The tuple sublattice has a structure similar to that of the facets. At the top is the empty tuple type, (],
characterizing a type with no components. At the bottom is Tuple, the tple type with all possible compo-
nents. We restrict component types to facet, function, or ADT. Note that restricting queries to only Tuple

(with all and only the Facets appeanng as componenrs) and allowmg as a default facet value reduces this
approach to the of Pneto—Dxaz

(| y (il s vy sa W0 € &

4 10

owWouiy ey

L

|
[

‘v'

{ f

I A O I

d
«

)

Facetp

Function, Objecty Mediumy SystemTypeo Functional Areag Settingp

Function Object Medium SystemType FunctionalArea Setting

Facet

Figure 7. The Sublattice of Facet Sets
4.2.1. Facets vs. Facet Value Sets

Traditional retrieval of individual facet values relies upon maximal conjunction of boolean terms for
retrieval of matches on all facets and maximal disjunction of boolean terms for matches on any facet of an
expression. In order to fit the notion of facet into the type lattice, we look at sets of facets. A set of facets
corresponds to a conjunction on all of the facets comprising the set. Each set occupies a unique position in
the type lattice. We handle disjunction by allowing a given component to occupy multiple lattice positions.
Matching occurs on any of the positions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation within the type
system to a particular facet value. Values are bound to some semantic concept in the problem domain.

The subset relation is our partial order. The least value of this portion of the lattice is the set of all facet
values from all facets in the problem domain, denoted by the distinguished name Facet. The greatest value
of this portion of the lattice is the empty set, denoted by the distinguished name Faceto. The union operator
generates the greatest lower bound. The intersection operator generates the least upper bound.

4.2.2. Domain Interval Subtypirrngw

We adapted the notion of a domain interval {4] to formalize our notion of facet value sets [6,5]. In [4]
a subtype was smaller than its supertype; here the reverse is true, a subtype is a larger collection of values
than its supertype.

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a base type.
Assume that t is a base type ordered by < (the ordering may be arbitrary). A domain that is (inclusively)
delimited by two values, a and b, is denoted ts...). Intervals made up of more than a single continuous value
range are denoted by a set of ranges; for example, Us..».c..4« denotes the interval that includes the subinter-
val a through b inclusive, the subinterval ¢ through d inclusive, and the singleton value e. The singleton
range e is equivalent to ¢...e. When we use such notation we intend that a < b and ¢ < d, but not necessarily

K i

thatb<cord<e. Anempty pair of brackets, k), denotes an empty interval, i.e., one which contains no -
elements. In our particular application, the base types are finite sets of enumeration (facet) values.
Premises conoemmg membership of mw;ﬂm values (¢.g., m and n in (1) and (2)) are assumed E= |
to be part of the assumptions, and typically are not explicitly mentioned. Rule (1) provides for subtyping a
subrange of some type t; (2) does the same for two subranges of some type L Rule (3) extends subtyping to =
Almet -
Alnet
Atm<n (H =
Abt {tm. n -
AFmet
Atm'et —
Atnet -
Atn’ et (2
Atm’Sm<nsn —
Atte . o) {lim. ;
domain intervals, where each subinterval in the subtype is a subtype of some interval in the supertype.
At ot m‘) ;
Ab Lmi..0i ¥ tmg. 00 @ =
At th;...m,...m...q)'.(‘(ﬁl'..nx'.....nx’...m) ?
Not shown are rules used to combine ranges in domain intervals; two ranges in an interval that share a L
commeon endpoint combine into a single range, and overlapping ranges merge into a single range that useés =
Lhemlmmumofthetwolowerbomdsastbenewlowerboundandthemaxunumofthctwouppabounds %
as the new upper bound. =
4.2.3. Function Typing -

Function types are useful both for chéractetizing programs and for characterizing the operations of
ADTs. Inference rule (4) characterizes the usual notion of lambda abstraction, where x is the parameter, t’

e 4
the parameter’s type, ¢ is the body of the function, and t the type of the function’s result. -
Ax:t'te:t @ z
AFAx:the : (@t -t)
One function type, s—)t,lsasubtypcofanothers—)t’ dmcsubtypefuncnonacceptsthccnuredo- =
main of the function supertype (i.e., s’ * s), and produces a range contained in the supertype range (ie., t$ i
t"), as shown in inference rule (5).
Ats' <s : %
Akboest 5) -
Abtsotid— v -
Function subtypmg seems a little strange at first, but a su'nple example hclps Assumc that f is a func- é
tion type (1..4) — true and g is a function type (2..3) — (true..false). Function type f is a subtype of g. Any DR
instance of f can always replace an instance of g in an expression without effecting the type-safety of the o z
expressmn “The instance of f handles?aY léis} the values the supertype function does, and produces no more -

|

values than does the supertype function.

(

!

4

"
“

‘ o
“

(]

4.2.4. ADT Typing

Inference rules (6) and (7) define type inference for existential types [1]. An existential type consists
of a type variable a, representing the type, packaged with some number (js ... j») of instances of the type
and/or operations over the type.

Ater:sin

A. Fea: Saln)
Abpack(a=tin(i: st ..., jn: Sn))
(e1, ..., €a) : 3a.(j1: 51, .e0s Jn: Sn)

AFe:3b.(ji:St, e jos Sa)
Ax:Gi:st, e jun:S))lan ke it W)
A topeneasxfaline :t
A given expression ¢ is of type si when ¢ is substituted for a in s, and serves as the implementation of

the value or operation labeled ji in the abstract type. This substitution results in a concrete type (i.c., one
with no type variables in it) for the expression. The substitution type t serves as the representation of the
abstract type, denoted externally by the existential variable a. The actual representation and the implemen-
tations of the operations are not visible externally.

The pack operation constructs an instance of an abstract type, and encapsulates its representation. The
open operation performs the converse, binding an abstract type variable to a concrete type, and evaluating
some expression in the context of the (now concrete) abstract type.

Subtyping of ADTs derives from subtyping of the type parameters for the abstract type. Inference rule
(8) characterizes subtyping of two instances of abstract types.
At st F(t <)
A F@A £t2).) < (3(n £ t2).t))
Note that in addition to providing subtyping of two ADTs, rule (8) also supports subtyping of two in-
stances of the same ADT. '

®

For an example of the former, 3T° 3(T £ T').T” denotes an existential type T” generated by a type
parameter T, which must be a subtype of the existential type T'. Since instances of abstract types are cross
products of instances and operations, T would be a subtype of T through additional operations. An exam-
ple of this appeared in [13], showing stacks and dequeues as subtypes of queues.

For an example of the latter, stack of integera.1o is a subtype of stack of integer.

4.2.5. Tuple Typing

We view a tuple r to be of type recor&, (ti, ..., L}, where t is some facet, function, or ADT type. While
components are not labeled, they may appear in any order since we assume that facet names are unique.
Two record types are assumed to be equivalent if they only differ in the order of their respective compo-
nents.

Inference rule (9) characterizes subtyping for tuples. Informally, one tul:':le type is a subtype of another
if it has all of the components of the other (and possible more), and for those common components, the type

of a given component in the tuple subtype must be a subtype of that component’s type in the tuple super-
type.

AFl<m<n

A' Ft'y <ty

:)
Abtmity

AF{th, ..., 'my ..o, ta} £ {11, ..., Um)
Inference rule (10) supports det'mmon of tuple constams and exlracnon of a component value, respec-
tively.

Atei=1;

Ate=t, 10y
Afr={en..,e)br:(ty, ..., ta)

4.2.6 Repository Structure

The repository itself consists of the actual componen}s (we aren’t concerned at this point whether they
are stored in source form, or in executable form (as oons:dened by chdc, et. al. [14])), axiomatic specnf' ica-
tions for each of the components, and a vocabulary—based classification structure.

The components are partitioned by structural sumlanty (packagc function, etc.). Each partition is as-
sociated with a set of facets which characterize and classxfy all members of the partition. The particular
facets and the number of facets associated with a partition varies as needed to adequately characterize it. A
given facet may be unique to a partition, or it may be shared by many partitions. The Function facet from

sectxon4szagoodenmpleofaﬁacethkelytobeshamdbyama)omyofpamuonsmthcreposnory

Each partition instance (i.e., each component) has one or more lattice vertices that correspond to the
sets of section 4.2.1. There is always the primary lattice vertex corresponding to the tuple of facet value
sets characterizing this component as a member of the partition. Additionally, there may be zero or more
secondary lattice vertices corresponding to altemative characterizations of the component or characteriza-
tions of subcomponents contained within this component.

5. Behavior Specifications in Reuse” -~~~ =

We base rcposxtoryiremcval mw'face upon both lhe vocabulary used in components and the observable
behavwr of componcnts thaz is, thc moms that fa'mally charactcnzc the semanucs of components "The

Retrieval of components under this system proceeds in two phases. A reuser initially specifies a vo-
cabulary/signature query, narrowmg the field of candidates to those that are isomorphic to the query signa-
ture (if one is specified). The axioms characterizing each of the candidate components in turn are then used
as theories supporting attempted proofs of the proposition(s) the reuser poses in the second phase of the -
query (using an existing theorem prover, e.g., RRL [10]). Successful proof of all of the propositions posed
by the user indicates that the component of interest provides at least the semantics sought after.

" “This by no ‘means unphes that the componems thus retrieved have the same semanues For example
the query proposition

L[[

tq 41 ¢ «.

| .

401

dily

(R { vt od

Create: — Stack

Push: Stack X Integer — Stack
Pop: Stack — Stack
Top: Stack — Integer

Empty: Stack — Boolean
Depth: Stack — Integer

Figure 8 - Signature for the Stack Specification

Remove (Insert (Crgate, x)) = Create
can be proven both by the stack axioms (with Remove bound to Pop and Insert bound to Push) and by the
queue axioms (with Remove bound to Dequeue and Insert bound to Enqueue). However, the query proposi-
tion

Remove (Insert (Insert (Create,x),y)) = Insert (Create,x)
can be proven only by the stack axioms; having failed to prove the query proposition, the queue specifica-
tion would be removed as a candidate. Our assumption in this approach is that the reuser will pose proposi-
tions that best characterize the behavior of interest (i.e., the second example proposition better characterizes
a stack than does the first example proposition), thereby providing better discrimination between signature—
isomorphic components.

Propositions posed by reusers need to be tested against a single specification’s axiom set multiple
times in cases where an operation from the reuser’s query signature cannot be resolved to a single operation
in a candidate component’s signature. This usually results from an insufficient vocabulary framework.
Consider the signature of figure 8, a slightly extended version of figure 1. In the absence of any classifica-
tion information specifically concemning the Top and Depth operations for query propositions such as

Query(Insert (Insert (Create,x),y)) = ¥

Query(Insert (Insert (Create,x),y)) = 2
(assuming that these two propositions are posed in separate queries) the system must attempt a proof of the
proposition using both a binding of Query to Top, Insert to Push, and Create to Create, and a binding of
Query to Depth, Insert to Push, and Create to Create. The first proposition is successfully proved using the
first binding and the second proposition by the second binding.

We associate an operation partition with each distinct operator type signature, ¢.g., *— TOI” or
“TOI X Integer — TOI”,in a specification. A given operation is a member of an operation partition
if it has the type associated with that partition. The number of alternative bindings, AB, for a given query/
candidate pairing derives from the cardinalities of each of COP, the set of distinct operation partitions in the
candidate signature, and QOP, the set of distinct operation partitions in the query signature.

[T lai4bl if b=aexists

€ QOP
AB= [] ’ (1

1€ COP 1 otherwise

Two operations, a and b, drawn from the candidate signature and the query signature, respectively, are
partition equivalent, writien a = b, if the types associated with the partitions differ only in TOI, the type of
interest. In the absence of any other information, any member of a given query operation partition must be
bound to all members of the corresponding candidate operation partition for proving user propositions, par-

1) - TOI

2) TOI X Integer — TOI
3) TOI — TOI

4) TOI — Integer

S) TOI — Boolean

Figure 9 — Operation Partitions

ticularly when a candidate component’s author chose misleading operation names. Figure 9 shows the five
operation partitions for figures 1-3 and figure 8.

Singleton operation partitions are unambiguous, since there can be buta single binding possible be-
tween the query operation and the candidate operation. Hence, there is only a single binding possible be-
tween each of specifications in figures 1-3, since each of the partitions contains a single operation.

Operation partitions containing more than one operation are ambiguous, and using (11), contribute a
proportional increase in the number of alternative bmdmgs Figure 8 has two opemuons in operator parti-
tion 4), Top and Depth; hence, the two alternative bindings discussed above.

6. ConclusTons ’“

Our approach merges traditional vocabulary and syntactic based retrieval mechanisms with the formal
semantics of algebraic specification. Neither retrieval mechanism in isolation is sufficient to oompIeter
address the entire problem. Perhaps the most surprising result of this work was our realization concerning
the fuzziness of even formal specifications, due to the ambiguity of the terms used in those specifications.
This prompted the initiation of work in t.hc application of neural networks to the problem [7].

We are still refining the approach described in this paper. Two specific avenues of research include
refining partition equivalence and exploring fragmentary signatures. The current definition of partition
equivalence does not adequately address parametric polymorphism, and therefore does not handle compo-
nents that are instantiations of generic ADTs as well as it handles the generics themselves. Fragmentary
signatures, signatures that only partially characterize an ADT, hold excellent promxse in supporting the use
of our retrieval mechanism in the incremental construction of software from a mix of newly-written code
and reused components.

References
1] J. A.Bcrgsu'a,J Heering, and P. Klmt,eds Algebra:c Specgﬁcauon , Addison-Wesley, 1989.

(2] L.Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,”
ACM Computing Surveys, vol. 17, no. 4, pages 471-522, December, 1985.

(3] H. Ehrig and B Mahr, Fundamentals of Algebraic Specifications I, Springer—Verlag, 1985.

[4] D. Eichmann, Polymorphic Extensions to the Relational Model, Ph.D. dissertation, Dept. of Com-
puter Science, The University of Iowa, Iowa City, IA, August 1989.

[5] D. Eichmann, “A Hybrid Approach to Software Repository Retrieval: Blending Faceted Classifica-
tion and Type Signatures,” Third International Conference on Software Engineering and Knowl-
edge Engzneermg Skoknef IL,June27-29,1991. ... , o

[6] D. Eichimann and J. Atkins, “Desxgn ofa Latuce—Based Facetcd Classification Systcm Second
International Conference on Software Engineering and Knowledge Engineering, Skokie, IL, pages
90-97, June 21-23,1990. ... _. P :

-10-

g My i o€

i

11t

A

[H ¢

I

a4l

W g

wy e el

(1

il

(|

0

- I
(I

"

.n

(71

(8]

[9]

(10]

(11)

(12]

[13]

[14]

[15]

D. Eichmann and K. Srinivas, “Neural Network—Based Retrieval from Software Reuse Reposito-
ries,” CHI'91 Workshop on Neural Networks and Pattern Recognition in Human-Computer Inter-
Saces, New Orleans, LA, April 28, 1991,

J. V. Guttag and J. J. Homing, “The Algebraic Specification of Abstract Data Types,” Acta Infor-
matica, vol. 10, pages 27-52, 1978.

W. P. Jones, “On the Applied use of Human Memory Models: The Memory Extender Personal
Filing System,” Int. Journal of Man-Machine Studies, vol. 25, no. 2, pages 191-228, August,
1986.

D. Kapur and H. Zhang, “RRL: A Rewrite Rule Laboratory,” Ninth International Conference on
Awomated Deduction (CADE-9), Argonne, IL, May, 1988.

R. Prieto-Diaz, P. Freeman, “Classifying Software for Reusability,” JEEE Software, vol. 4, no. 1,
pages 6-16, 1987.

R. Prieto-Diaz, “Implementing Faceted Classification for Software Reuse,” Communications of
the ACM, vol. 34, no. 5, pages 80-97.

A. Snyder, “Inheritance in the Development of Encapsulated Software Components,” Research
Directions in Object~Oriented Programming, B. Shriver and P. Wegner, eds., MIT Press,
Cambridge, MA, pages 165-188, 1987.

B. Weide, W. Ogden, S. Zweben, “Reusable Software Components,” Advances in Computers, M.
C. Yovits, ed., Academic Press, 1991,

M. Wirsing, “Algebraic Specifications,” Handbook of Theoretical Computer Science, vol. B, J.
van Leeuwen, ed., MIT Press, 1991.

~11-

RNy w wmy owm N o wR i mod R W M m py N

